The number of objects determines visual working memory capacity allocation for complex items
نویسندگان
چکیده
We examined whether visual working memory (WM) capacity allocation is determined solely by complexity, with the number of objects being redundant, as suggested by flexible resource models. Participants performed the change detection task with random polygons as stimuli, while we monitored the contralateral delay activity (CDA), an electrophysiological marker whose amplitude rises as WM capacity load increases. In Experiment 1, we presented random polygons together with other complex items (e.g., shaded cubes and Chinese characters) and decreased the resolution with which random polygons need to be maintained in WM by introducing only between-category changes (e.g., polygon to cube). The results indicated that the polygon still consumed more WM capacity relative a simple object. In Experiment 2, we compared the WM maintenance of one whole polygon to two halves of a polygon, thus equating complexity but manipulating the number of items. Additionally, we compared the whole polygon to a single half of a polygon, equating the number of items but varying the complexity level. The results suggested that only the number of objects determined WM capacity allocation: the CDA amplitude was lower in the whole polygon condition relative to the two halves condition, even though both contained the same amount of information. Furthermore, the CDA was identical when comparing one whole polygon to one polygon half, even though these conditions differed in complexity. Experiment 3 extended these results by showing that two polygon-halves moving separately but then meeting and moving together, were gradually integrated to consume similar WM capacity as one polygon half. Interestingly, we also found an object benefit in accuracy, corroborating the important role of objects in WM. Our results demonstrate that WM capacity allocation is highly sensitive to objecthood, as suggested by discrete slot models. Meeting abstract presented at VSS 2015.
منابع مشابه
Dynamic shifts of limited working memory resources in human vision.
Our ability to remember what we have seen is very limited. Most current views characterize this limit as a fixed number of items-only four objects-that can be held in visual working memory. We show that visual memory capacity is not fixed by the number of objects, but rather is a limited resource that is shared out dynamically between all items in the visual scene. This resource can be shifted ...
متن کاملVisual working memory represents a fixed number of items regardless of complexity.
Does visual working memory represent a fixed number of objects, or is capacity reduced as object complexity increases? We measured accuracy in detecting changes between sample and test displays and found that capacity estimates dropped as complexity increased. However, these apparent capacity reductions were strongly correlated with increases in sample-test similarity (r= .97), raising the poss...
متن کاملThe Role of Attentional Priority and Saliency in Determining Capacity Limits in Enumeration and Visual Working Memory
Many common tasks require us to individuate in parallel two or more objects out of a complex scene. Although the mechanisms underlying our abilities to count the number of items, remember the visual properties of objects and to make saccadic eye movements towards targets have been studied separately, each of these tasks require selection of individual objects and shows a capacity limit. Here we...
متن کاملRemembering complex objects in visual working memory: do capacity limits restrict objects or features?
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that...
متن کاملDiscrete resource allocation in visual working memory.
Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is defined in terms of discrete storage "slots," then o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2015